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An experiment on the Saffman-Taylor instability with wetting fluids is presented 
that explores a greater range of capillary numbers than did the original experiment 
of Saffman and Taylor. It turns out that no clear one-half plateau for the finger size 
is observed, and that the ensemble of experiments cannot be analysed in terms of 
a single control parameter. The effect of the film of oil left behind the finger is 
important, and we measure its thickness. A qualitative discussion of the instabilities 
of the fhgers for large capillary numbers is presented, the first instability leading to 
asymmetrical fingers. Tip splitting appears for larger values of 1/B. The 1/B value 
for the onset of instabilities is shown to be noise dependent. 

1. Introduction 
The penetration of a gas into a viscous fluid in a Hele-Shew channel (Saffman- 

Taylor problem) is an example of the general problem of pattern formation in 
nonlinear systems. In the simplified approach proposed by Saffman & Taylor (1958) 
in their original paper, the flow of the two fluids is considered to be two dimensional 
and the interface is a line. In  the gas the pressure is uniform, and in the viscous fluid 
the motion obeys a Darcy law so that all the nonlinearities of the system originate 
in the boundary conditions at the interface. In the absence of surface tension, a plane 
interface is unstable at any velocity of propagation. With a finite surface tension, 
the stability analysis of a flat interface gives a dispersion relation of the form (see 
e.g. the review paper by Bensimon et al. 1986) : 

T b 2  
0 = K u - K 3 -  

12p’ 

where the velocity of the interface U is directed from the air towards the oil, T is 
the interfacial tension, ,u is the viscosity, K the wavenumber and w the exponential 
growth rate of an initially small sinusoidal disturbance. Since the maximum 
wavelength allowed by the boundary conditions corresponds to K~~~ = 2x/w, where 
w is the width of the cell, one obtains that the flat interface is unstable if 

Experimentally, Saffman & Taylor found that plane interfaces are destabilized by 
wavelengths scaling approximately with the maximum growth wavelength obtained 
from (1). The most striking observation was then that the system further evolves 
towards a state where a single finger occupies about one-half of the channel width 
at large velocities (figure 1). They could calculate analytically particular steady 
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FIGURE 1. Picture of a finger close to A = 4. The dimensions of the cell are: w = 5.4 cm and 
b = 0.8 mm. Air penetrating into oil. 

solutions of the problem in the zero-surface-tension limit. Using a conformal 
mapping, they found a continuous family of solutions described by a dimensionless 
parameter A which represents the relative size of the finger compared to  the width 
of the channel (0 c A c 1) .  The calculated shapes agree very well with the observed 
ones in the regime of high capillary numbers (Ca = ,uU/T), provided that one chooses 
a value of A equal to the observed one ( A  E f in this regime). On the other hand, for 
small capillary numbers, where surface tension is important, the computed shapes 
differ substantially from the actual ones. 

The problem was reconsidered by McLean & Saffman (1981). Allowing a finite 
surface tension, they found that 1/B defined above is the only parameter that  enters 
the equations of motion. Their numerical study led to  values of the size of the finger 
close to  t at large velocities, which was in good agreement with the experiments. At 
low velocities (i.e. 1 /B  c loo), the agreement with the experiments was more 
ambiguous since the finger sizes predicted by the theory were significantly below 
those actually measured (figure 7). 

A more empirical approach to the problem was taken by Pitts (1980). He repeated 
the experiment of Saffman & Taylor and argued that the flow due to the film left 
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behind the interface controls the boundary condition on it. He then noticed an 
intriguing property of self similarity for the shapes of the fingers and built from this 
experimental fact a theory which gives A = ?j iingers at large velocities. The agreement 
between theory and experiment was thus obtained at  the expense of an empirical 
assumption. 

Another question that is not yet fully understood concerns the mechanism that 
selects the particular solutions that are observed experimentally. It is known that 
the McLean-Saffman equations have more than one solution. Romero (1982) found 
numerically a second set of solutions to these equations, and Vanden-Broeck (1983) 
showed later that there exists a discrete family of solutions to this problem. On the 
other hand, only one solution is observed in the experiments. 

As for the stability of the fingers, the recent experimental observations (Park & 
Homsy 1985) and computer simulations (De Gregoria & Schwartz 1985) are that the 
fingers become unstable at large values of 1/B, and that the threshold for the onset 
of the instability depends on the noise. This can be qualitatively understood applying 
an argument given by Zel’dovitch et al. (1980) (Bensimon et al. 1986). 

The results contained in this paper are the following: since data obtained using 
cells with different aspect ratios do not fall onto the same curve, a single control 
parameter like l /B  is not enough to describe the system. Also, in experiments with 
wetting oils no clear A = plateau is observed: the A ws. 1/B curve shows a slow and 
continuous decrease below this value for increasing 1/B. For large values of 1/B the 
fingers become unstable. The first instability that we observe is an asymmetric 
disturbance on one side of the tip, while at higher velocities tip splitting occurs. 

The paper is organized as follows: we first describe the experimental set-up in $2. 
In $3 we give a description of steady fingers. In  $4 we study the low velocity regime. 
In $ 5 ,  we study the film left behind the fingers. Then we analyse the large-velocity 
regime and the stability of the fingers. 

2. The experimental set-up 
Several set-ups have been built for the experiment, but all rely on the same 

principles. We describe here the last apparatus, from which most of the results 
presented in this paper have been obtained. The experimental arrangement is 
sketched in figure 2. The Hele-Shaw cell consists of two long rectangular glass plates 
separated by two aluminium spacers which define the walls of the channel. The plates 
are 120 cm long, 10 cm wide and 1.27 cm thick. At  either end of the channel are two 
Plexiglas pieces in which a rectangular cavity the same size as the channel width has 
been machined in order to limit any possible influence of the extremities of the cell 
on the flow itself. Those pieces are connected to a hydraulic circuit (composed of 
valves and a magnetic pump), which in turn is connected to a syphon. The magnetic 
pump, which was driven by a d.c. motor, was used at large values of the parameter 
1/B. For small values, it turned out to be more convenient to pull the fluid by means 
of gravitational forces. In both cases, the experimental conditions imposed a constant 
fluid velocity through the channel. Experiments showed that an accurate control of 
the velocity was achieved; the regulation was better than 

Since the homogeneity of the gap was thought to be a crucial factor for the accuracy 
of the experimental results (the control parameter 1/B depends on b2), we used 
interferometry to estimate the defects of the cell and eventually reduce them. We 
found that the inhomogeneity of the gap did not exceed lop3 cm throughout the entire 
channel. The largest non-uniformities were located, as expected, near the ends. In  
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FIQURE 2. Schematic view of the finger and the oil film, which is blown up. The optical beams for 
the interference study are shown on the top figure. The bottom figure describes how the focal length 
is measured. 

the central part of the cell, the size of the defects lay below 5 x cm, and it was 
possible to define a large area for which this value falls to  3 x cm. These estimates 
proved to  be useful for studying the film left behind the fingers and the fingers’ 
stability. 

We chose oils as the viscous fluid in most of the experiments: vacuum pump oil, 
lubricating oils or silicone oils. Silicone oils Rhodorsil series 47V turned out to be the 
most convenient because their physical properties are weakly dependent on 
temperature and they completely wet glass. The test that we used for estimating 
wetting properties consisted of studying the evolution of the radius of a droplet on 
a clean surface and comparing i t  with Tanner’s law (1979)’ which, for a wetting fluid, 
predicts that the radius will grow as a power of time. Some experiments have been 
performed with glycerol in order to visualize the flow around the fingers. 

The physical parameters of the fluid were measured. The surface tension was 
determined by three different methods (capillary tube, pendent drop and Padday 
method 1969), and the viscosity was measured by the falling-ball method. 
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FIGURE 4. Finger of air in glycerol, seeded with small fish-skin particles. 
Time exposure in the frame of reference of the finger. 

Several cells were studied. The gap between the plates was varied by changing the 
spacers, and the width of the channel could be varied by shifting them. We used three 
sets of spacers, corresponding to  gaps of 800,480 and 173 pm. I n  conclusion, we found 
that the quality of the experiment depends strongly on avoiding pinning effects a t  
the walls and non-uniformities in the channel gap. 

3. Description of stationary fingers 
When an interface starts moving, it generates a few modes which grow and compete 

together, as shown in figure 3. The competition ends with a single finger occupying 
a part of the channel and moving steadily along it. The number of modes initially 
excited depends on the velocity of the interface. Experimentally, we observe that the 
number of modes increases more or less as the square root ofthe velocity, as predicted 
by the linear stability analysis. 

An example of a steady finger is shown in figure 1. I n  the physical space, the dark 
line, which defines the interface, is a meniscus of oil that  scatters the light coming 
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FIGURE 5. Finger shape for 1/B < 50. At this small velocity one can observe instabilities of the 
film left behind. 

from below. Behind the tip, the interface is parallel to the spacers. One can obtain 
very long fingers, almost as long as the channel itself. 

How is the flow around a steady finger? We have performed experiments with 
glycerol in order to visualize the motion. Figure 4 shows a time exposure taken in 
the frame of reference of the finger. The small particles that seed the fluid show two 
types of trajectories: some of them, originating far ahead, deviate as they approach 
the finger, and are further convected along its sides. Other particles converge towards 
the interface, swirl on a small scale as they come close to it, and are further convected 
backwards. Such motion shows the existence of a pair of small eddies at the tip. Note 
that a few of them cross the interface and are trapped in the film of glycerine left 
behind the finger. This motion was previously pointed out by Pitts (1980). An 
interesting result is the existence of a rolling motion confined in a narrow region close 
to the interface. This feature has been obtained in a numerical calculation by Reinelt 
& Saffman (1985), and i t  shows that in this region the flow is three dimensional. 
Further away from the tip the streamlines are embedded in horizontal layers and the 
flow is two dimensional. 
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FIGURE 6. Plot of 1 - A  as a function of 1/B. w = 3.025 cm, b = 0.149 cm, p = lop, 
T = 74 dynes/cm. High-surface-tension oil is used, and a small-aspect-ratio cell in order to obtain 
a measurable velocity. 

4. The low-velocity regime 
Phenomenologically, the steady fingers are defined by their velocity U,  their shape 

and their size A. We now discuss the relation between A and U .  
The first question that we ask concerns the existence of a control parameter. The 

relevant pressure terms in the problem are the viscous one, which, using Darcy’s law 
U = - (b2/12p) V p  and w as a typical lengthscale, gives p x 12,uU(w/b2), and the one 
due to surface tension, which is of order T / w ,  so that we are indeed led to consider 
the dimensionless number 1/B = 1 2 ( ~ / b ) ~ p ( U / T )  as the control parameter of the 
system. 

Since the size of steady fingers varies rapidly with 1/B in the low-velocity regime, 
we first restrict our study to this region. Experimentally, we observe that the finger 
shapes become semicircular when the velocity is decreasd to very low values, i.e. for 
1/B < 50 (figure 5 ) .  The motion of the fluid around the finger is everywhere as slow 
as the finger itself and no abnormal draining appears. The finger a t  rest is not a flat 
interface because of the influence of the lateral walls; i t  is a semicircle. Therefore, 
there seems to  be a continuity between the finger a t  rest and the one moving very 

Physically, it  is more natural to characterize the finger sizes by 1 - A ,  which 
represents the quantity of fluid left behind the finger as it moves. Our experimental 
results are presented in figure 6. They show a linear relation between 1 - A  and 1 / B :  

slowly. 

1 - A  x 0.011/B. (3) 

This law holds for all values of the aspect ratio w/b measured. 
Next we consider larger velocities. Figure 7 summarizes the results that we have 

obtained for 0 < l / B  < 250. Experiments have been performed with a large aspect 
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FIQURE 7. Relative size A of the finger as a function of the parameter 1/B. 0,  Saffman-Taylor 
experiment (aspect ratio w/b = 31.8); 0,  experimental results obtained in cell I, with Rhodorsil 
oil 47VlO; x , experimental results obtained in a cell of aspect ratio w/b = 62.3 with Rhodorsil oil 
47V50. Theoretical results of McLean & Saffman are presented as a continuous curve. 

ratio w/b = 65, and with two oils. The purpose of this experiment was to compare 
our data with those of Saffman & Taylor, obtained with an aspect ratio about two 
times smaller. 

As shown in figure 7, our data accurately follow a single line which decreases as 
1/B is increased. The shape of the interface is circular for 1/B < 50 (figure 5). For 
larger values of 1/B its shape is shown in figure 1. We obtain a result previously shown 
by Saffman & Taylor: for a given aspect ratio, the curves are universally described 
by a capillary number, such as l/B. As a matter of fact, the data obtained in two 
closely similar cells but with two different oils lie on a single curve. However, this 
curve lies significantly below that of Saffman & Taylor. Therefore, we conclude that 
1/B is not the single control parameter of the problem. We have not found any other 
parameter for which all the data fit on a single curve. We thus come to the conclusion 
that the problem is described by two parameters. 

If we now look at the theoretical results, we find that they disagree with the two 
experiments, as shown in figure 7. We therefore suspect that another effect, not taken 
into account by the theory, is involved in the experiments. 

5. Influence of the film left behind the fingers 
The interface between air and oil is a meniscus which lives in a three-dimensional 

space. When the interface is advancing, the meniscus produces a film behind it. 
Basically, this problem is analogous to the Landau-Levich (1942) film drained by 
a vertical plate. The problem is indeed well defined only when the fluid wets the 
surface. The theoretical study of the film drained behind a flat interface in a capillary 
tube has been performed by Bretherton (1961). According to this study, the film 
thickness follows a power law with the interface velocity, for small velocities ; more 
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FIGURE 8. Plot of h wuy. 1/B for three different aspect ratios. A, wlb = 112.5; +, w/b = 65; 
0, w/b = 34. 

precisely, if R is the radius of the capillary tube the formula for the film thickness 
t reads : 

(4) 
t 
- = 0.643 (3Ca)f. 
R 

Accordingly, the pressure drop across the interface is affected by the presence of this 
film. In  general, if the interface is not flat, we expect the film thickness to depend 
on the velocity component normal to the interface. 

When a finger is moving in a Hele-Shaw cell the normal velocity varies along the 
interface, and therefore one expects the film thickness to be non-uniform behind the 
interface, which means that the finger moves in a channel of variable gap. Intuitively, 
one feels that the physical problem may be strongly affected by this phenomenon, 
and this has been studied theoretically by Park & Homsy (1984). 

We performed an experimental study of such a film. The results for low capillary 
numbers are described in a previous paper by Tabeling & Libchaber (1986). The film 
thickness was determined interferometrically (figure 2), and it was found that the 
shape of the film is of the form : 

( 5 )  

where Un is the normal velocit,y. This means that along the interface, the film 
thickness obeys a local Bretherton law. Also, the maximum thickness t,,, as a 
function of Ca agrees with Bretherton's law for small Ca. In  this regime the effect 
of the film on the finger itself can be taken into account by rescaling the parameter 
1/B using an  expression for the pressure drop across the interface derived by Park 
& Homsy (1984). I n  this way a better agreement with the McLean-Saffman theory 
is achieved. We thus find that the film plays a significant role in the experiments and 
that the previous disagreement between theory and experiments is partly due to the 
fact that the film had been neglected in the theoretical models. 

t = t,,,( un/ 0, 
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FIGURE 9. Maximum film thickness v8 capillary number for various aspect ratios. The solid curves 
represent the function t = t,( 1 -edCQ3), with j3 = 8.585. 0 ,  numerical results of Reinelt &, Saffman. 
The unit used for w, 6 ,  t ,  is mm. 

6. The large-velocity regime 
For large capillary numbers the experimental results of Saffman & Taylor seemed 

to indicate that the finger size saturates at the value A = +. Although this result was 
also obtained in the numerical analysis of McLean & Saffman, the physical mechanism 
of such a behaviour remains obscure. We therefore found it  useful to  get accurate 
measurements of the finger size for different aspect ratios, in order to define the 
problem clearly from an  experimental point of view. Our results are plotted in figure 8. 
Different aspect ratios led to slightly different curves. All the curves go below the 
value A = 4, and the differences between them are small and monotonic with the 
aspect ratio wlb. Hence we do not observe a A = + plateau and i t  appears that  1 / B  
is not the only control parameter of the system. Therefore one suspects again that 
some other physical mechanism, not taken into account by the theory, plays an 
important role here, evidently related to the evolution of the film thickness in this 
regime. We thus proceeded to study it. 

The interferometric method was difficult to use here, because the growing thickness 
of the film leads to  denser fringes. Therefore we resorted to a different technique, 
which exploits the fact that  the film can be used as a convergent mirror. By measuring 
its focal length, and inferring its shape from the interferometric measurements at low 
velocities, we can obtain the maximum thickness t,,,. This analysis presumes that 
the film shape remains self-similar even a t  high velocities. 

The results obtained for various different cells are shown in figure 9. As is predicted 
in his paper, Bretherton’s law breaks down for values of Ca larger than about 
and t,,, saturates a t  a value which depends on the dimensions of the cell. This 
technique also enabled us to  carry out separate measurements for the top and bottom 
films, which were indeed found to be symmetric. An experimental study of the film 
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FIGCRE 10. Picture of the first instability for l / B  z 7000. 

left behind a bubble in a capillary tube was performed by Taylor (1961), and a 
numerical two-dimensional calculation of the film thickness up to Ca = 2 has been 
published by Reinelt & Saffman (1985). In  figure 9 we plot some points taken from 
figure 4 of that paper, adjusted for a cell thickness of 0.8 mm. When comparing them 
with the experimental data one has to take into account that in the experiments there 
is an effect of the aspect ratio on the film thickness, as is apparent from figure 9, while 
the Reinelt-Saffman calculation corresponds to the limit w/b + co. 

In passing we note that all the experimental curves can be fitted by a stretched 
exponential of the form: 

with K z 0 . 1 1 9 , ~  z 0.038,p z 8.58. This law reduces to Bretherton's for small 
values of Ca. 

t,,, = Kb( 1 - e-Y("J/b)) (1 - e-acai), (6) 

7. Study of the stability of the fingers 

stability of the fingers. 
We have performed several experiments in two different cells in order to study the 
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FIQURE 1 1 .  Tip splitting instability at two different times. 

The first cell (cell I) had dimensions b = 0.08 em, w = 5.26 em and the oil used was 
Rhodorsil 47V500 (T = 20.1 dynes/cm, p = 4.76 poise). The other cell (cell 11) had 
dimensions w = 5.7 cm, b = 0.076 cm and the oil used was a lubricating oil, whose 
characteristics are: T = 30 dynes/cm, p = 3 poises. Both cells have similar charac- 
teristics, but the gap of cell I1 is less uniform than that of cell I: we estimated the 
maximum variations Sb/b for cell I1 equal to 3 x whereas for cell I it is around 
3 x an order of magnitude improvement in the homogeneity of the gap between 
the plates. The net result was that for cell I1 the first instabilities appeared for 
1/B x 3000, whereas for cell I the threshold was pushed to 1/B x 7000. Apart from 
the onset value we have observed the same hierarchy of instabilities for both cells. 

Figure 10 shows the first type of disturbance appearing beyond a critical 1/B value. 
When the finger velocity is increased, the interface becomes unstable in the way 
shown in the figure. A disturbance appears on one side of the tip, grows, recedes 
backwards and is further damped. In a frame of reference moving with the finger, 
the disturbance looks like a wave packet which travels backwards, while in the 
laboratory frame this packet looks stationary. The perturbations are stretched as 
they move along the interface, as a result of the velocity gradient they encounter. 
A particular feature of this instability is that it seems to be localized. When a 
disturbance grows on one side, i t  leaves the other side unperturbed. There is no real 
threshold value of 1/B for the instability, but in each cell, there is a narrow region 
in the parameter space above which the fingers are unstable. Let us call it ‘threshold 
region ’. 

The physical origin of the instability is related to small non-uniformities of the cell 
as can be surmized from the fact that the disturbances generally appear at  the same 
places in the channel. This feature is clearly observable when 1/B is close to the 
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threshold region. In  cell I, when 1/B x 7000, we usually observe one or two 
disturbances growing along the interface and then decaying for a complete course 
of the finger along the channel. The number of events increases with 1/B; for a value 
of 1/B larger than 12000, the disturbances appear almost everywhere ; similar 
features have been observed in cell 11. 

Beyond the non-symmetric disturbances and for larger values of 1/B tip splitting 
occurs, as shown in figure 11. This kind of instability has also been recently observed 
experimentally by Park & Homsy (1985) and in computer simulations by De Gregoria 
& Schwartz (1985). 

Let us now try to  summarize the theoretical understanding ; the puzzling problem 
was the result of McLean & Saffman (1981) showing that the fingers were linearly 
unstable. Then came the discovery by De Gregoria & Schwartz (1985), from computer 
simulations, that noise was an important factor concerning the stability. Then 
Bensimon (1986), Kessler & Levine (1985) showed that the fingers are linearly stable 
up to large values of the parameter 1/B, and they studied the nonlinear instability 
of the system. There is a strong analogy between the instability of the fingers and 
that of the premixed flames. The latter problem was analysed by Zel’dovitch et al. 
(1980). I n  both cases, the non-symmetric disturbances are advected and stretched 
along the interface. The effect of the advection is stabilizing because the perturbation 
is brought to regions of lower velocities. The effect of the stretching is also stabilizing 
because it leads to  an increase of the wavelength and hence to  a decrease of the 
amplification rate of the perturbation. The existence of these two mechanisms may 
explain why the fingers can be stable. Now the instability occurs anyway if the 
amplitude of the disturbance is large enough. Bensimon et al. (1986) have obtained 
a relation between the amplitude of the noise v, necessary to obtain marginal 
eigenvalues and the parameter 1/B. The striking result is that vC is an exponential 
function of 1/B, so that the instability threshold is entirely determined by the 
velocity. The picture that they obtained is that  of a system extremely sensitive to  
changes in velocity as far as the stability is concerned. 

From the experimental side, many observed features are in agreement with the 
theory. The description of the evolution of the non-symmetric disturbances is very 
close t o  that predicted by the theory; also the shapes of the unstable fingers are in 
excellent agreement with the theory (see Bensimon (1986) in which a detailed 
comparison is made). 

However, the agreement becomes more ambiguous when we look at the sensitivity 
of the system to noise. According to  the theory, the instability of the fingers is 
controlled by l /B : significant differences between the intrinsic noise of two experi- 
ments should induce only small changes for the ‘threshold’ value of 1/B. This is not 
what we observe. Small improvements of the quality of our experimental set-up led 
to dramatic changes in the threshold values of 1/B, while the threshold value itself 
is not sharply defined. 

We have tried to go further into this question by applying some external 
perturbation on the interfaces and see how they eventually become unstable. The 
perturbation was an electric field. Although such experiments were not entirely 
conclusive, it appeared that the critical value of the noise was weakly dependent on 
the velocity below the threshold region, which is in conflict with theory. 

The origin of such a disagreement is possibly related to the existence of the film, 
which has been neglected by the theory. The effect of the film is stabilizing. For the 
case of a plane interface, the analysis shows that the presence of a film reduces the 
amplification rate of the disturbance and shifts the critical wavenumber towards 
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smaller values. One feels that both effects can play a role in the nonlinear stability 
of the fingers. 

8. Conclusion 
The main conclusion of this paper is that the film plays a crucial role in the 

Saffman-Taylor problem. This was realized by Pitts (1980) and by McLean 6 
Saffman, and the Reinelt-Saffman work was stimulated by this question, but no clear 
experimental account of its importance has been reported previously. We do not 
observe a h = 4 plateau in the h ws. 1/B curve for large 1/B, and this can be ascribed 
to the fact that the curvature of the meniscus keeps changing with changing Ca. 
Concerning the stability of the fingers, we observe that the value of 1/B at which 
the first instabilities occur depend strongly on the noise. 

We thank D. Bensimon, M. Jensen, L. Kadanoff and P. Pel& for very illuminating 
discussions. This work was supported by the National Science Foundation under 
Grant N. DMR-8316204, and also by an NSFINT-8412371 exchange award for 
P. Tabeling. 
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